Ela Computing Codimensions and Generic Canonical Forms for Generalized Matrix Products

نویسنده

  • DANIEL KRESSNER
چکیده

A generalized matrix product can be formally written as A sp p A sp−1 p−1 · · ·A s2 2 A s1 1 , where si ∈ {−1,+1} and (A1, . . . , Ap) is a tuple of (possibly rectangular) matrices of suitable dimensions. The periodic eigenvalue problem related to such a product represents a nontrivial extension of generalized eigenvalue and singular value problems. While the classification of generalized matrix products under eigenvalue-preserving similarity transformations and the corresponding canonical forms have been known since the 1970’s, finding generic canonical forms has remained an open problem. In this paper, we aim at such generic forms by computing the codimension of the orbit generated by all similarity transformations of a given generalized matrix product. This can be reduced to computing the so called cointeractions between two different blocks in the canonical form. A number of techniques are applied to keep the number of possibilities for different types of cointeractions limited. Nevertheless, the matter remains highly technical; we therefore also provide a computer program for finding the codimension of a canonical form, based on the formulas developed in this paper. A few examples illustrate how our results can be used to determine the generic canonical form of least codimension. Moreover, we describe an algorithm and provide software for extracting the generically regular part of a generalized matrix product.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing codimensions and generic canonical forms for generalized matrix products

A generalized matrix product can be formally written as A sp p A sp−1 p−1 · · ·A s2 2 A s1 1 , where si ∈ {−1,+1} and (A1, . . . , Ap) is a tuple of (possibly rectangular) matrices of suitable dimensions. The periodic eigenvalue problem related to such a product represents a nontrivial extension of generalized eigenvalue and singular value problems. While the classification of generalized matri...

متن کامل

Ela Structured Canonical Forms for Products of (skew-)symmetric Matrices and the Matrix Equation Xax = B

The contragredient transformation A 7→ PAP, B 7→ PBP of two matrices A,B effects simultaneous similarity transformations of the products AB and BA. This work provides structured canonical forms under this transformation for symmetric or skew-symmetric A,B. As an application, these forms are used to study the quadratic matrix equation XAX = B, where both A,B are skew-symmetric or symmetric matri...

متن کامل

Ela 450

We solve the matrix equation XA+AX = 0, where A ∈ C is an arbitrary given square matrix, and we compute the dimension of its solution space. This dimension coincides with the codimension of the tangent space of the congruence orbit of A. Hence, we also obtain the (real) dimension of congruence orbits in C. As an application, we determine the generic canonical structure for congruence in C and a...

متن کامل

Ela Schur Complements and Banachiewicz - Schur Forms

Through the matrix rank method, this paper gives necessary and sufficient conditions for a partitioned matrix to have generalized inverses with Banachiewicz-Schur forms. In addition, this paper investigates the idempotency of generalized Schur complements in a partitioned idempotent matrix.

متن کامل

Ela the Drazin Inverse through the Matrix Pencil Approach and Its Application to the Study of Generalized Linear Systems with Rectangular or Square Coefficient Matrices∗

In several applications, e.g., in control and systems modeling theory, Drazin inverses and matrix pencil methods for the study of generalized (descriptor) linear systems are used extensively. In this paper, a relation between the Drazin inverse and the Kronecker canonical form of rectangular pencils is derived and fully investigated. Moreover, the relation between the Drazin inverse and the Wei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011